DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:37Z-
dc.date.available2020-05-01T20:13:37Z-
dc.date.issued2008-11-01en
dc.identifier.issn1065-2469en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1607-
dc.description.abstractWe investigate the boundedness and compactness of the following generalization of the Libera operator Λz0γ (f)(z) = γ+1/(z-z0)γ+1 ∫z0z f(ζ)(z-ζ)γdζ where ℛγ > -1, f(z) = Σk=0∞akz k, and z0 belongs to the closure of the unit disk double-struck D. Among other results, it is shown that if p≥1,α≥-1/p and z0 ∈ ∂ double-struck D, the operator is bounded on the mixed norm space Aαp,q(double-struck D) = {f ∈ H(double-struck D)|∫01 Mpq(f,r)(1-r)αdr < ∞}, if and only if 1/p+(α+1)/q<1. The compactness of the operator is also investigated. We introduce two Libera-type transforms on the unit ball B ⊂ ℂn. For one of these operators we give some sufficient conditions to be compact on the mixed norm space on the unit ball, and for the other we show that the operator is bounded on the weighted Bergman space A αp on the unit ball.en
dc.publisherTaylor & Francis-
dc.relation.ispartofIntegral Transforms and Special Functionsen
dc.subjectAnalytic function | Boundedness | Compactness | Libera operator | Mixed norm space | Unit ball | Unit discen
dc.titleOn Libera-type transforms on the unit disc, polydisc and the unit ballen
dc.typeArticleen
dc.identifier.doi10.1080/10652460801948890en
dc.identifier.scopus2-s2.0-54249095092en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage785en
dc.relation.lastpage799en
dc.relation.issue11en
dc.relation.volume19en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 24, 2024

Page view(s)

11
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.