| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Stević, Stevo | en |
| dc.date.accessioned | 2020-05-01T20:13:36Z | - |
| dc.date.available | 2020-05-01T20:13:36Z | - |
| dc.date.issued | 2009-01-15 | en |
| dc.identifier.issn | 0362-546X | en |
| dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1594 | - |
| dc.description.abstract | A complete picture regarding the boundedness character of positive solutions to the following difference equation xn = max {A, frac(underover(x, n - 1, p), underover(x, n - k, p))}, n ∈ N0, where k ≥ 2 and the parameters A and p are positive real numbers, is given. In particular, for the case pk - 1 ∈ (0, kk / (k - 1)k - 1), we prove that all solutions to the equation are bounded. We also present corresponding results concerning the following closely related difference equation xn = A + frac(xn - 1p, xn - kp), n ∈ N0 . | en |
| dc.publisher | Elsevier | - |
| dc.relation.ispartof | Nonlinear Analysis, Theory, Methods and Applications | en |
| dc.subject | Boundedness | Characteristic polynomial | Difference equation | Max-type equation | Positive solution | en |
| dc.title | Boundedness character of a class of difference equations | en |
| dc.type | Article | en |
| dc.identifier.doi | 10.1016/j.na.2008.01.014 | en |
| dc.identifier.scopus | 2-s2.0-56149112586 | en |
| dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
| dc.relation.firstpage | 839 | en |
| dc.relation.lastpage | 848 | en |
| dc.relation.issue | 2 | en |
| dc.relation.volume | 70 | en |
| dc.description.rank | M21a | - |
| item.cerifentitytype | Publications | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.grantfulltext | none | - |
| item.openairetype | Article | - |
| item.fulltext | No Fulltext | - |
| crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
83
checked on Jan 27, 2026
Page view(s)
64
checked on Jan 26, 2026
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.