DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, Songxiao | en |
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:35Z | - |
dc.date.available | 2020-05-01T20:13:35Z | - |
dc.date.issued | 2009-02-15 | en |
dc.identifier.issn | 0096-3003 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1593 | - |
dc.description.abstract | Let H (B) denote the space of all holomorphic functions on the unit ball B ⊂ Cn. In this paper we investigate the following integral operators:Tg (f) (z) = ∫01 f (tz) R g (tz) frac(dt, t) and Lg (f) (z) = ∫01 R f (tz) g (tz) frac(dt, t),where f ∈ H (B), z ∈ B, g ∈ H (B) and R h (z) = ∑j = 1n zj frac(∂ h, ∂ zj) (z) is the radial derivative of h. The operator Tg can be considered as an extension of the Cesàro operator on the unit disk. The boundedness and compactness of the operators Tg and Lg, on the Zygmund space and from the Zygmund space to the Bloch space are studied. | en |
dc.publisher | Elsevier | - |
dc.relation | NSF of Guangdong Province (No. 7300614) | - |
dc.relation.ispartof | Applied Mathematics and Computation | en |
dc.subject | Bloch space | Boundedness | Compactness | Extended Cesàro operator | Unit ball | Zygmund space | en |
dc.title | Cesàro-type operators on some spaces of analytic functions on the unit ball | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.amc.2008.12.006 | en |
dc.identifier.scopus | 2-s2.0-58949094363 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 378 | en |
dc.relation.lastpage | 388 | en |
dc.relation.issue | 2 | en |
dc.relation.volume | 208 | en |
dc.description.rank | M21 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
64
checked on Dec 20, 2024
Page view(s)
21
checked on Dec 22, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.