DC FieldValueLanguage
dc.contributor.authorLi, Songxiaoen
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:35Z-
dc.date.available2020-05-01T20:13:35Z-
dc.date.issued2009-02-15en
dc.identifier.issn0096-3003en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1593-
dc.description.abstractLet H (B) denote the space of all holomorphic functions on the unit ball B ⊂ Cn. In this paper we investigate the following integral operators:Tg (f) (z) = ∫01 f (tz) R g (tz) frac(dt, t) and Lg (f) (z) = ∫01 R f (tz) g (tz) frac(dt, t),where f ∈ H (B), z ∈ B, g ∈ H (B) and R h (z) = ∑j = 1n zj frac(∂ h, ∂ zj) (z) is the radial derivative of h. The operator Tg can be considered as an extension of the Cesàro operator on the unit disk. The boundedness and compactness of the operators Tg and Lg, on the Zygmund space and from the Zygmund space to the Bloch space are studied.en
dc.publisherElsevier-
dc.relationNSF of Guangdong Province (No. 7300614)-
dc.relation.ispartofApplied Mathematics and Computationen
dc.subjectBloch space | Boundedness | Compactness | Extended Cesàro operator | Unit ball | Zygmund spaceen
dc.titleCesàro-type operators on some spaces of analytic functions on the unit ballen
dc.typeArticleen
dc.identifier.doi10.1016/j.amc.2008.12.006en
dc.identifier.scopus2-s2.0-58949094363en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage378en
dc.relation.lastpage388en
dc.relation.issue2en
dc.relation.volume208en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

64
checked on Dec 20, 2024

Page view(s)

21
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.