DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:35Z-
dc.date.available2020-05-01T20:13:35Z-
dc.date.issued2009-05-01en
dc.identifier.issn0096-3003en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1586-
dc.description.abstractMotivated by the recent paper [X. Zhu, Products of differentiation composition and multiplication from Bergman type spaces to Bers spaces, Integral Transform. Spec. Funct. 18 (3) (2007) 223-231], we study the boundedness and compactness of the weighted differentiation composition operator Dφ, un (f) (z) = u (z) f(n) (φ (z)), where u is a holomorphic function on the unit disk D, φ is a holomorphic self-map of D and n ∈ N0, from the mixed-norm space H(p, q, φ{symbol}), where p,q > 0 and φ{symbol} is normal, to the weighted-type space Hμ∞ or the little weighted-type space Hμ, 0∞. For the case of the weighted Bergman space Aαp, p > 1, some bounds for the essential norm of the operator are also given.en
dc.publisherElsevier-
dc.relation.ispartofApplied Mathematics and Computationen
dc.subjectBoundedness | Compactness | Essential norm | Mixed-norm space | Weighted differentiation composition operator | Weighted-type spaceen
dc.titleWeighted differentiation composition operators from mixed-norm spaces to weighted-type spacesen
dc.typeArticleen
dc.identifier.doi10.1016/j.amc.2009.01.061en
dc.identifier.scopus2-s2.0-64449088544en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage222en
dc.relation.lastpage233en
dc.relation.issue1en
dc.relation.volume211en
dc.description.rankM21-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

106
checked on Apr 3, 2025

Page view(s)

22
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.