DC FieldValueLanguage
dc.contributor.authorLi, Songxiaoen
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:34Z-
dc.date.available2020-05-01T20:13:34Z-
dc.date.issued2009-06-01en
dc.identifier.issn0096-3003en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1583-
dc.description.abstractWe prove that an analytic function f on the unit ball B with Hadamard gaps, that is, f (z) = ∑k = 1∞ Pnk (z) (the homogeneous polynomial expansion of f) satisfying nk + 1 / nk ≥ λ > 1 for all k ∈ N, belongs to the space Bpα (B) = fenced(f | sup0 < r < 1 (1 - r2)α {norm of matrix} R fr {norm of matrix}p < ∞, f ∈ H (B)), α, p > 0 if and only if limsupk → ∞ {norm of matrix} Pnk {norm of matrix}p nk1 - α < ∞. Moreover, we show that the following asymptotic relation holds {norm of matrix} f {norm of matrix}Bpα {equivalent to} supk ∈ N {norm of matrix} Pnk {norm of matrix}p nk1 - α. Also we prove that limr → 1 (1 - r2)α {norm of matrix} R fr {norm of matrix}p = 0 if and only if limk → ∞ {norm of matrix} Pnk {norm of matrix}p nk1 - α = 0. These results confirm two conjectures from the following recent paper [S. Stević, On Bloch-type functions with Hadamard gaps, Abstr. Appl. Anal. 2007 (2007) 8 pages (Article ID 39176)].en
dc.publisherElsevier-
dc.relationNSF of Guangdong Province (No. 7300614)-
dc.relation.ispartofApplied Mathematics and Computationen
dc.subjectα-Bloch space | Hadamard gaps | Holomorphic function | Unit ball | Weighted-Hardy spaceen
dc.titleWeighted-Hardy functions with Hadamard gaps on the unit ballen
dc.typeArticleen
dc.identifier.doi10.1016/j.amc.2009.02.019en
dc.identifier.scopus2-s2.0-65349092108en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage229en
dc.relation.lastpage233en
dc.relation.issue1en
dc.relation.volume212en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

15
checked on Dec 27, 2024

Page view(s)

23
checked on Dec 27, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.