DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:34Z | - |
dc.date.available | 2020-05-01T20:13:34Z | - |
dc.date.issued | 2009-06-15 | en |
dc.identifier.issn | 0022-247X | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1580 | - |
dc.description.abstract | We introduce the following integral-type operator on the space H (B) of all holomorphic functions on the unit ball B ⊂ CnPφg (f) (z) = underover(∫, 0, 1) f (φ (t z)) g (t z) frac(d t, t), z ∈ B, where g ∈ H (B), g (0) = 0 and φ is a holomorphic self-map of B. The boundedness and compactness of the operator from the Bloch space B or the little Bloch space B0 to the Bloch-type space Bμ or the little Bloch-type space Bμ, 0, are characterized. In the main results we calculate the essential norm of the operators Pφg : B (or B0) → Bμ (or Bμ, 0) in an elegant way. | en |
dc.publisher | Elsevier | - |
dc.relation.ispartof | Journal of Mathematical Analysis and Applications | en |
dc.subject | Bloch space | Bloch-type space | Boundedness | Compactness | Essential norm | Integral-type operator | Unit ball | en |
dc.title | On a new integral-type operator from the Bloch space to Bloch-type spaces on the unit ball | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.jmaa.2008.12.059 | en |
dc.identifier.scopus | 2-s2.0-60449088317 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 426 | en |
dc.relation.lastpage | 434 | en |
dc.relation.issue | 2 | en |
dc.relation.volume | 354 | en |
dc.description.rank | M21 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
149
checked on Apr 3, 2025
Page view(s)
19
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.