DC FieldValueLanguage
dc.contributor.authorLi, Songxiaoen
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:33Z-
dc.date.available2020-05-01T20:13:33Z-
dc.date.issued2009-09-15en
dc.identifier.issn0096-3003en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1571-
dc.description.abstractLet H (B) denote the space of all holomorphic functions on the unit ball B ⊂ Cn. This paper investigates the following integral-type operator with symbol g ∈ H (B)Tg (f) (z) = ∫01 f (tz) R g (tz) frac(dt, t), f ∈ H (B), z ∈ B,where R g (z) = ∑j = 1n zj frac(∂ g, ∂ zj) (z) is the radial derivative of g. The boundedness and compactness of the operator Tg from Bloch-type spaces to Zygmund-type spaces are studied.en
dc.publisherElsevier-
dc.relationEducational Commission of Guangdong Province, China (No. LYM08092)-
dc.relation.ispartofApplied Mathematics and Computationen
dc.subjectBloch-type space | Boundedness | Compactness | Integral-type operators | Zygmund-type spaceen
dc.titleIntegral-type operators from Bloch-type spaces to Zygmund-type spacesen
dc.typeArticleen
dc.identifier.doi10.1016/j.amc.2009.05.011en
dc.identifier.scopus2-s2.0-68949173947en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage464en
dc.relation.lastpage473en
dc.relation.issue2en
dc.relation.volume215en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

62
checked on Dec 20, 2024

Page view(s)

18
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.