DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:32Z-
dc.date.available2020-05-01T20:13:32Z-
dc.date.issued2009-10-01en
dc.identifier.issn1370-1444en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1563-
dc.description.abstractMotivated by a recent paper by S. Ohno we calculate Hilbert-Schmidt norms of products of composition and differentiation operators on the Bergman space A2α, α > - 1 and the Hardy space H2 on the unit disk. When the convergence of sequences (φn) of symbols to a given symbol φ implies the convergence of product operators CφnDk is also studied. Finally, the boundedness and compactness of the operator CφDk : A2α → A2α are characterized in terms of the generalized Nevanlinna counting function.en
dc.publisherBelgian Mathematical Society-
dc.relation.ispartofBulletin of the Belgian Mathematical Society - Simon Stevinen
dc.titleProducts of composition and differentiation operators on the weighted Bergman spaceen
dc.typeArticleen
dc.identifier.scopus2-s2.0-73249117816en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage623en
dc.relation.lastpage635en
dc.relation.issue4en
dc.relation.volume16en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

100
checked on Nov 25, 2024

Page view(s)

14
checked on Nov 24, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.