DC FieldValueLanguage
dc.contributor.authorLi, Songxiaoen
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:31Z-
dc.date.available2020-05-01T20:13:31Z-
dc.date.issued2009-12-15en
dc.identifier.issn0096-3003en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1551-
dc.description.abstractLet H (B) denote the space of all holomorphic functions on the open unit ball B of Cn. Let φ = (φ1, ..., φn) be a holomorphic self-map of B and g ∈ H (B) such that g (0) = 0. In this paper we study the boundedness and compactness of the following integral-type operator, recently introduced by Xiangling Zhu and the second authorIφg f (z) = ∫01 R f (φ (tz)) g (tz) frac(dt, t), z ∈ B,from the iterated logarithmic Bloch spaces into the Bloch-type spaces. For the case when φ (z) ≡ z we also obtain a sufficient and necessary condition for the boundedness of this operator from the iterated logarithmic Bloch space into the little Bloch-type space.en
dc.publisherElsevier-
dc.relationEducational Commission of Guangdong Province, China (No. LYM08092)-
dc.relation.ispartofApplied Mathematics and Computationen
dc.subjectBloch-type space | Boundedness | Compactness | Integral-type operator | Iterated logarithmic Bloch spaceen
dc.titleOn an integral-type operator from iterated logarithmic Bloch spaces into Bloch-type spacesen
dc.typeArticleen
dc.identifier.doi10.1016/j.amc.2009.10.004en
dc.identifier.scopus2-s2.0-70450222101en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage3106en
dc.relation.lastpage3115en
dc.relation.issue8en
dc.relation.volume215en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

32
checked on Dec 27, 2024

Page view(s)

30
checked on Dec 27, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.