DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stević, Stevo | en |
dc.contributor.author | Chen, Renyu | en |
dc.contributor.author | Zhou, Zehua | en |
dc.date.accessioned | 2020-05-01T20:13:31Z | - |
dc.date.available | 2020-05-01T20:13:31Z | - |
dc.date.issued | 2010-01-01 | en |
dc.identifier.issn | 1064-5616 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1549 | - |
dc.description.abstract | For p > 0, let βp(Dn) denote the p-Bloch space on the unit polydisc Dn of Cn and ρ(z) = (ρ1(z), ⋯ , ρn(z)) a holomorphic self-map of Dn. We investigate the boundedness and compactness of the weighted composition uCρf(z) = u(z)f(∞(z)) between p-Bloch space βp(Dn) (little p-Bloch space β 0p (Dn)) and q-Bloch space Bq(Dn) (little q-Bloch space β0q(Dn)). The most important result in the paper is that conditions for the compactness are different for the cases p ∈ (0, 1) and p ≥ 1, unlike for the case of the weighted operators on the unit disc. | en |
dc.publisher | Turpion | - |
dc.relation.ispartof | Sbornik Mathematics | en |
dc.subject | Bloch-type spaces | Boundedness | Compactness | Polydisc | Weighted composition operator | en |
dc.title | Weighted composition operators between Bloch-type spaces in the polydisc | en |
dc.type | Article | en |
dc.identifier.doi | 10.1070/SM2010v201n02ABEH004073 | en |
dc.identifier.scopus | 2-s2.0-77954783876 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 289 | en |
dc.relation.lastpage | 319 | en |
dc.relation.issue | 2 | en |
dc.relation.volume | 201 | en |
dc.description.rank | M22 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
26
checked on Dec 27, 2024
Page view(s)
21
checked on Dec 27, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.