Authors: | Stević, Stevo | Affiliations: | Mathematical Institute of the Serbian Academy of Sciences and Arts | Title: | Global stability of some symmetric difference equations | Journal: | Applied Mathematics and Computation | Volume: | 216 | Issue: | 1 | First page: | 179 | Last page: | 186 | Issue Date: | 1-Mar-2010 | Rank: | M21 | ISSN: | 0096-3003 | DOI: | 10.1016/j.amc.2010.01.029 | Abstract: | Suppose r ∈ (0, 1], m ∈ N and 1 ≤ k1 < k2 < ⋯ < k2 m + 1, and let S2 m + 1 = {1, 2, ..., 2 m + 1}. We show that every positive solution to the difference equationyn = frac(P2 m + 12 m + 1 (yn - k1r, yn - k2r, ..., yn - k2 m + 1r), P2 m2 m + 1 (yn - k1r, yn - k2r, ..., yn - k2 m + 1r)), n ∈ N0,whereP2 m + 12 m + 1 (x1, x2, ..., x2 m + 1) = underover(∑, frac(r = 1, r odd), 2 m + 1) under(∑, frac({t1, t2, ..., tr} ⊆ S2 m + 1, t1 < t2 < ⋯ < tr)) xt1 xt2 ⋯ xtrandP2 m2 m + 1 (x1, x2, ..., x2 m + 1) = 1 + underover(∑, frac(r = 2, r even), 2 m) under(∑, frac({t1, t2, ..., tr} ⊂ S2 m + 1, t1 < t2 < ⋯ < tr)) xt1 xt2 ⋯ xtr,converges to one. This result confirms a quite recent conjecture posed by Liu and Yang (2010) in [10]. We also prove another result regarding a related equation. |
Keywords: | Positive solution | Rational difference equation | Stability | Symmetry | Publisher: | Elsevier |
Show full item record
SCOPUSTM
Citations
17
checked on Apr 2, 2025
Page view(s)
19
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.