DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:30Z | - |
dc.date.available | 2020-05-01T20:13:30Z | - |
dc.date.issued | 2010-03-01 | en |
dc.identifier.issn | 0096-3003 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1540 | - |
dc.description.abstract | We show that every positive solution to the difference equationxn = max fenced(frac(A1, xn - p1α1), frac(A2, xn - p2α2), ..., frac(Ak, xn - pkαk)), n ∈ N0,where pi, i = 1, ..., k are natural numbers such that 1 ≤ p1 < ⋯ < pk, k ∈ N, Ai > 0, αi ∈ (- 1, 1), i = 1, ..., k, converges to max1 ≤ i ≤ k fenced(Aifrac(1, αi + 1)). This result improves and complements the main result in our recent note: S. Stević, Global stability of a difference equation with maximum, Appl. Math. Comput. 210 (2009) 525-529, since it also considers the case when αi ∈ (- 1, 0], i{dotless} = 1, ..., k. | en |
dc.publisher | Elsevier | - |
dc.relation.ispartof | Applied Mathematics and Computation | en |
dc.subject | Convergence | Max-type difference equation | Positive solution | Primary 39A11 | en |
dc.title | Global stability of a max-type difference equation | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.amc.2010.01.020 | en |
dc.identifier.scopus | 2-s2.0-76849116142 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 354 | en |
dc.relation.lastpage | 356 | en |
dc.relation.issue | 1 | en |
dc.relation.volume | 216 | en |
dc.description.rank | M21 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
78
checked on Apr 3, 2025
Page view(s)
16
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.