DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:30Z-
dc.date.available2020-05-01T20:13:30Z-
dc.date.issued2010-03-01en
dc.identifier.issn0096-3003en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1540-
dc.description.abstractWe show that every positive solution to the difference equationxn = max fenced(frac(A1, xn - p1α1), frac(A2, xn - p2α2), ..., frac(Ak, xn - pkαk)), n ∈ N0,where pi, i = 1, ..., k are natural numbers such that 1 ≤ p1 < ⋯ < pk, k ∈ N, Ai > 0, αi ∈ (- 1, 1), i = 1, ..., k, converges to max1 ≤ i ≤ k fenced(Aifrac(1, αi + 1)). This result improves and complements the main result in our recent note: S. Stević, Global stability of a difference equation with maximum, Appl. Math. Comput. 210 (2009) 525-529, since it also considers the case when αi ∈ (- 1, 0], i{dotless} = 1, ..., k.en
dc.publisherElsevier-
dc.relation.ispartofApplied Mathematics and Computationen
dc.subjectConvergence | Max-type difference equation | Positive solution | Primary 39A11en
dc.titleGlobal stability of a max-type difference equationen
dc.typeArticleen
dc.identifier.doi10.1016/j.amc.2010.01.020en
dc.identifier.scopus2-s2.0-76849116142en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage354en
dc.relation.lastpage356en
dc.relation.issue1en
dc.relation.volume216en
dc.description.rankM21-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

78
checked on Apr 3, 2025

Page view(s)

16
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.