DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:30Z-
dc.date.available2020-05-01T20:13:30Z-
dc.date.issued2010-04-01en
dc.identifier.issn0096-3003en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1538-
dc.description.abstractLet Ω be a bounded, circular, strictly convex domain in Cn with C2 boundary and H (Ω) the space of all analytic functions on Ω. Let u ∈ H (Ω) and φ be a holomorphic self-map of Ω. The weighted composition operator uCφ on H (Ω) is defined by (uCφ) (f) (z) = u (z) f (φ (z)), where f ∈ H (Ω) and z ∈ Ω. Let Hlogγβ (Ω), β > 0, γ ∈ R+, be the logarithmic weighted-type space on Ω, and Aαp (Ω), p ∈ (0, ∞), α ∈ (- 1, ∞), the weighted Bergman space on Ω. Here we characterize the boundedness and compactness of the weighted composition operator uCφ : Hlogγβ (Ω) → Aαp (Ω).en
dc.publisherElsevier-
dc.relation.ispartofApplied Mathematics and Computationen
dc.subjectBergman space | Bounded circular domain | Boundedness | Compactness | Primary 47B38 | Secondary 47B33 | The logarithmic weighted-type space | Weighted composition operatoren
dc.titleWeighted composition operators from the logarithmic weighted-type space to the weighted Bergman space in Cnen
dc.typeArticleen
dc.identifier.doi10.1016/j.amc.2010.01.105en
dc.identifier.scopus2-s2.0-77949541792en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage924en
dc.relation.lastpage928en
dc.relation.issue3en
dc.relation.volume216en
dc.description.rankM21-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

8
checked on Apr 15, 2025

Page view(s)

20
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.