DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:29Z-
dc.date.available2020-05-01T20:13:29Z-
dc.date.issued2010-10-29en
dc.identifier.issn0362-1588en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1527-
dc.description.abstractThis paper studies the boundedness and compactness of the following, so called, extended Cesàro operator Tg(fz) = ∫01 f(tz) Rg(tz)dt/t, z ε B. between the mixed-norm space H(p, q, ℓ) and the Bloch-type space Bμ (or the little Bloch-type space Bμ,o) of holomorphic functions on the unit ball B in Cn. For the special (but still very general) case of the weighted Bergman space Aαp the paper calculates the norm of the operator for the case p > 0 and finds some upper and lower bounds for the essential norm of the operator when p > 1. When the reciprocal function of μ is Lebesgue integrable we completely characterize the boundedness and compactness of the operator Tg: Bμ → H (p, q, ℓ).en
dc.publisherUniversity of Houston-
dc.relation.ispartofHouston Journal of Mathematicsen
dc.subjectBloch-type space | Boundedness | Compactness | Essential norm | Extended cesà | Mixed-norm space | Ro operators | Unit ballen
dc.titleExtended cesàro operators between mixed-norm spaces and bloch-type spaces in the unit ballen
dc.typeArticleen
dc.identifier.scopus2-s2.0-77958490554en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage843en
dc.relation.lastpage858en
dc.relation.issue3en
dc.relation.volume36en
dc.description.rankM22-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

12
checked on Apr 3, 2025

Page view(s)

21
checked on Jan 31, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.