DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jiang, Zhi Jie | en |
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:28Z | - |
dc.date.available | 2020-05-01T20:13:28Z | - |
dc.date.issued | 2010-12-01 | en |
dc.identifier.issn | 0096-3003 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1520 | - |
dc.description.abstract | We characterize the compactness of differences of weighted composition operators from the weighted Bergman space Aαp, 0 < p < ∞, α > -1, to the weighted-type space Hv∞ of analytic functions on the open unit disk D in terms of inducing symbols 1,2:D→D and u1,u2:D→C. For the case 1 < p < ∞ we find an asymptotically equivalent expression to the essential norm of these operators. | en |
dc.publisher | Elsevier | - |
dc.relation | Science Foundation of Sichuan Province (Nos. 2006A109, 20072A04) | - |
dc.relation.ispartof | Applied Mathematics and Computation | en |
dc.subject | Compact operator | Weighted Bergman space | Weighted composition operator | Weighted-type space | en |
dc.title | Compact differences of weighted composition operators from weighted Bergman spaces to weighted-type spaces | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.amc.2010.09.027 | en |
dc.identifier.scopus | 2-s2.0-78049236041 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 3522 | en |
dc.relation.lastpage | 3530 | en |
dc.relation.issue | 7 | en |
dc.relation.volume | 217 | en |
dc.description.rank | M21 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
19
checked on Dec 27, 2024
Page view(s)
20
checked on Dec 27, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.