DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.contributor.authorJiang, Zhi Jieen
dc.date.accessioned2020-05-01T20:13:27Z-
dc.date.available2020-05-01T20:13:27Z-
dc.date.issued2011-01-01en
dc.identifier.issn1027-5487en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1513-
dc.description.abstractLet Φ1 and Φ2 be holomorphic self-maps of the open unit ball B in CN, u1 and u2 be holomorphic functions on B and let weighted composition operators W Φ1,u1; WΦ2,u2: Apα → H∞v be bounded. This paper characterizes the compactness of the difference of these operators from the weighted Bergman space Apα, 0 < p < ∞, α >-1, to the weighted-type space H∞v of holomorphic functions on B in terms of inducing symbols Φ1, Φ2, u1 and u2. For the case p > 1 we find an asymptotically equivalent expression to the essential norm of the operator.en
dc.publisherMathematical Society of the Republic of China-
dc.relationScience Foundation of Sichuan Province (No.09ZC115)-
dc.relation.ispartofTaiwanese Journal of Mathematicsen
dc.subjectCompact operator | Essential norm | Weighted bergman space | Weighted composition operator | Weighted-type spaceen
dc.titleCompactness of the differences of weighted composition operators from weighted Bergman spaces to weighted-type spaces on the unit ballen
dc.typeArticleen
dc.identifier.doi10.11650/twjm/1500406489en
dc.identifier.scopus2-s2.0-81355134434en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage2647en
dc.relation.lastpage2665en
dc.relation.issue6en
dc.relation.volume15en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

12
checked on Feb 4, 2025

Page view(s)

17
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.