DC FieldValueLanguage
dc.contributor.authorBerg, Lotharen
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:27Z-
dc.date.available2020-05-01T20:13:27Z-
dc.date.issued2011-04-01en
dc.identifier.issn1023-6198en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1506-
dc.description.abstractWe show that the difference equation where k ∈ ℕ\{1}, has a positive solution converging to zero, by finding a finite asymptotic expansion of the solution. We also show that if p0 = 0 and p1,..., pk-1 are arbitrarily given positive numbers, then there exists a solution of the equation such that the subsequences (ykm+i)m∈ℕ0; i = 0,..., k - 1, have partial sums of exponential power series as finite asymptotic expansions. Finally, we sketch the case when q of the limits pi:= lim m→∞ykm+i (q > 1) are vanishing, where we determine only heuristically the next term of the asymptotic expansion.en
dc.publisherTaylor & Francis-
dc.relation.ispartofJournal of Difference Equations and Applicationsen
dc.subjectAsymptotic behaviour | Convergence to zero | Difference equation | Positive solutionsen
dc.titleOn the asymptotics of the difference equation yn(1 + yn-1... yn-k+1)= yn-ken
dc.typeArticleen
dc.identifier.doi10.1080/10236190903203820en
dc.identifier.scopus2-s2.0-79952752167en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage577en
dc.relation.lastpage586en
dc.relation.issue4en
dc.relation.volume17en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

76
checked on Jan 4, 2025

Page view(s)

18
checked on Jan 4, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.