DC FieldValueLanguage
dc.contributor.authorBerg, Lotharen
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:25Z-
dc.date.available2020-05-01T20:13:25Z-
dc.date.issued2011-11-01en
dc.identifier.issn0096-3003en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1493-
dc.description.abstractIn this note we show that the following systems of difference equations un+1 = vn/1+ vn, vn+1 = u n/1 + un, un+1 = vn/1+ u n, vn+1 = un/1 + vn, un+1 = un/1+ vn, vn+1 = vn/1 + u n with n∈ℕ0 and complex initial values u oand vo, are solvable explicitly by means of Riccati equations, and based on the formulae for the general solutions we present the behaviour of their solutions as n→∞. While the result is natural for the first system, it is a bit surprising for the other two systems.en
dc.publisherElsevier-
dc.relation.ispartofApplied Mathematics and Computationen
dc.subjectAsymptotics | Boundedness | Convergence | Periodicity | Riccati equations | Symmetric systems | System of difference equationsen
dc.titleOn some systems of difference equationsen
dc.typeArticleen
dc.identifier.doi10.1016/j.amc.2011.06.050en
dc.identifier.scopus2-s2.0-80052271974en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage1713en
dc.relation.lastpage1718en
dc.relation.issue5en
dc.relation.volume218en
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

128
checked on Nov 25, 2024

Page view(s)

17
checked on Nov 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.