DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stević, Stevo | en |
dc.contributor.author | Sharma, Ajay | en |
dc.contributor.author | Bhat, Ambika | en |
dc.date.accessioned | 2020-05-01T20:13:25Z | - |
dc.date.available | 2020-05-01T20:13:25Z | - |
dc.date.issued | 2011-11-15 | en |
dc.identifier.issn | 0096-3003 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1492 | - |
dc.description.abstract | Let ψ be a holomorphic function on the open unit disk double-struck D sign and φ a holomorphic self-map of double-struck D sign. Let C φ, Mψ and D denote the composition, multiplication and differentiation operator, respectively. We find an asymptotic expression for the essential norm of products of these operators on weighted Bergman spaces on the unit disk. This paper is a continuation of our recent paper concerning the boundedness of these operators on weighted Bergman spaces. | en |
dc.publisher | Elsevier | - |
dc.relation.ispartof | Applied Mathematics and Computation | en |
dc.subject | Bergman space | Essential norm | Multiplication operator | Product operator | Unit disk | en |
dc.title | Essential norm of products of multiplication composition and differentiation operators on weighted Bergman spaces | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.amc.2011.06.055 | en |
dc.identifier.scopus | 2-s2.0-80053225632 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 2386 | en |
dc.relation.lastpage | 2397 | en |
dc.relation.issue | 6 | en |
dc.relation.volume | 218 | en |
dc.description.rank | M21 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
92
checked on Dec 26, 2024
Page view(s)
16
checked on Dec 26, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.