DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:23Z-
dc.date.available2020-05-01T20:13:23Z-
dc.date.issued2012-03-01en
dc.identifier.issn0362-546Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1476-
dc.description.abstractBergman-Privalov class A Nα(B) consists of all holomorphic functions on the unit ball B⊂ Cn such that ||f||A Nα:=∫ Bln(1+|f(z)|)d Vα(z) <∞, where α>-1, d Vα(z)=cα, n(1-|z| 2)αdV(z) (dV(z) is the normalized Lebesgue volume measure on B and cα, n is the normalization constant, that is, Vα(B)=1). Under a mild condition, we characterize surjective isometries (not necessarily linear) on A Nα(B), and prove that T is a surjective multiplicative isometry (not necessarily linear) on A Nα(B) if and only if it has the form Tf=f°ψ or Tf=f°ψ̄̄, for every f∈A Nα(B), where ψ is a unitary transformation of the unit ball. The corresponding results for the case of the Bergman-Privalov class on the unit polydisk Dn are also given. Our results extend and complement recent results by O. Hatori and Y. Iida.en
dc.publisherElsevier-
dc.relation.ispartofNonlinear Analysis, Theory, Methods and Applicationsen
dc.subjectBergman-Privalov class | Multiplicative isometry | Nonlinear isometryen
dc.titleOn some isometries on the Bergman-Privalov class on the unit ballen
dc.typeArticleen
dc.identifier.doi10.1016/j.na.2011.10.042en
dc.identifier.scopus2-s2.0-84655163521en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage2448en
dc.relation.lastpage2454en
dc.relation.issue4en
dc.relation.volume75en
dc.description.rankM21-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

2
checked on Apr 2, 2025

Page view(s)

11
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.