DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:20Z-
dc.date.available2020-05-01T20:13:20Z-
dc.date.issued2013-03-11en
dc.identifier.issn0096-3003en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1440-
dc.description.abstractIt is shown that the next system of k difference equationsxn(j)=an(j)xn- k(j)bn(j)∏i=1kxn-i(σ(j+i-1))+cn(j),n∈N0,j=1,k,where an(j),bn(j),cn(j),n∈N0,j=1,k, and initial values x-i(j),i,j∈{1,...,k}, are real numbers, and where σ:N→{1,...,k} is defined by σ(km+j)=j+1,j=1,k-1,σ(km+k)=1, m∈N0, can be solved in closed form in an elegant way. Some applications of obtained formulas, for the case when the sequences an(j),bn(j) and cn(j) are k-periodic are also given.en
dc.publisherElsevier-
dc.relation.ispartofApplied Mathematics and Computationen
dc.subjectClosed form solution | k-periodic coefficients | System of difference equationsen
dc.titleOn a solvable system of difference equations of kth orderen
dc.typeArticleen
dc.identifier.doi10.1016/j.amc.2013.01.064en
dc.identifier.scopus2-s2.0-84875932890en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage7765en
dc.relation.lastpage7771en
dc.relation.issue14en
dc.relation.volume219en
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

17
checked on Nov 24, 2024

Page view(s)

14
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.