DC Field | Value | Language |
---|---|---|
dc.contributor.author | Brzdęk, Janusz | en |
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:19Z | - |
dc.date.available | 2020-05-01T20:13:19Z | - |
dc.date.issued | 2013-06-01 | en |
dc.identifier.issn | 0001-9054 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1433 | - |
dc.description.abstract | Motivated by the notion of Ulam's type stability and some recent results of S.-M. Jung, concerning the stability of zeros of polynomials, we prove a stability result for functional equations that have polynomial forms, considerably improving the results in the literature. | en |
dc.publisher | Springer Link | - |
dc.relation.ispartof | Aequationes Mathematicae | en |
dc.subject | Banach algebra | fixed point | Hyers-Ulam stability | polynomial type equation | en |
dc.title | A note on stability of polynomial equations | en |
dc.type | Article | en |
dc.identifier.doi | 10.1007/s00010-012-0146-x | en |
dc.identifier.scopus | 2-s2.0-84878891947 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 519 | en |
dc.relation.lastpage | 527 | en |
dc.relation.issue | 3 | en |
dc.relation.volume | 85 | en |
dc.description.rank | M22 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
6
checked on Apr 2, 2025
Page view(s)
17
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.