DC FieldValueLanguage
dc.contributor.authorBrzdęk, Januszen
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:19Z-
dc.date.available2020-05-01T20:13:19Z-
dc.date.issued2013-06-01en
dc.identifier.issn0001-9054en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1433-
dc.description.abstractMotivated by the notion of Ulam's type stability and some recent results of S.-M. Jung, concerning the stability of zeros of polynomials, we prove a stability result for functional equations that have polynomial forms, considerably improving the results in the literature.en
dc.publisherSpringer Link-
dc.relation.ispartofAequationes Mathematicaeen
dc.subjectBanach algebra | fixed point | Hyers-Ulam stability | polynomial type equationen
dc.titleA note on stability of polynomial equationsen
dc.typeArticleen
dc.identifier.doi10.1007/s00010-012-0146-xen
dc.identifier.scopus2-s2.0-84878891947en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage519en
dc.relation.lastpage527en
dc.relation.issue3en
dc.relation.volume85en
dc.description.rankM22-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

6
checked on Apr 2, 2025

Page view(s)

17
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.