DC FieldValueLanguage
dc.contributor.authorMihaljević, Miodrag J.en
dc.contributor.authorGolić, Jovan Dj.en
dc.date.accessioned2020-03-05T20:28:25Z-
dc.date.available2020-03-05T20:28:25Z-
dc.date.issued2000-01-01en
dc.identifier.issn0018-9448en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/142-
dc.description.abstractA novel analytical approach to performance evaluation of soft-decoding algorithms for binary linear block codes based on probabilistic iterative error correction is presented. A convergence condition establishing the critical noise rate below which the expected bit-error probability tends to zero is theoretically derived. It explains the capability of iterative probabilistic decoding of binary linear block codes with sparse parity-check matrices to correct, with probability close to one, error patterns with the number of errors (far) beyond half the code minimum distance. Systematic experiments conducted on truncated simplex codes seem to agree well with the convergence condition. The method may also be interesting for the theoretical analysis of the so-called turbo codes.en
dc.publisherIEEE-
dc.relation.ispartofIEEE Transactions on Information Theoryen
dc.subjectConvergence condition | Iterative error-correction decoding | Linear block codesen
dc.titleA method for convergence analysis of iterative probabilistic decodingen
dc.typeArticleen
dc.identifier.doi10.1109/18.868493en
dc.identifier.scopus2-s2.0-0034269942en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage2206en
dc.relation.lastpage2211en
dc.relation.issue6en
dc.relation.volume46en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-3047-3020-
Show simple item record

SCOPUSTM   
Citations

17
checked on Dec 27, 2024

Page view(s)

14
checked on Dec 26, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.