DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stević, Stevo | en |
dc.contributor.author | Alghamdi, Mohammed | en |
dc.contributor.author | Alotaibi, Abdullah | en |
dc.contributor.author | Shahzad, Naseer | en |
dc.date.accessioned | 2020-05-01T20:13:19Z | - |
dc.date.available | 2020-05-01T20:13:19Z | - |
dc.date.issued | 2013-08-08 | en |
dc.identifier.issn | 1417-3875 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1429 | - |
dc.description.abstract | Here we study the following system of difference equations where f and g are increasing real functions such that f(0)= g(0) = 0, and coefficients an, bn, cn, an, αn, βn, γn n ε ℕ0, and initial values x-i, y-i, i ε {1, 2,..., 2k} are real numbers. We show that the system is solvable in closed form, and study asymptotic behavior of its solutions. | en |
dc.publisher | Bolyai Institute, University of Szeged | - |
dc.relation | Deanship of Scientific Research (DSR), King Abdulaziz University, Grant No. (11-130/1433 HiCi). | - |
dc.relation.ispartof | Electronic Journal of Qualitative Theory of Differential Equations | en |
dc.subject | Asymptotic behavior | Solvable system | System of difference equations | en |
dc.title | On a higher-order system of difference equations | en |
dc.type | Article | en |
dc.identifier.doi | 10.14232/ejqtde.2013.1.47 | - |
dc.identifier.scopus | 2-s2.0-84881074857 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.description.rank | M21 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
20
checked on Apr 2, 2025
Page view(s)
17
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.