DC FieldValueLanguage
dc.contributor.authorLiu, Wanpingen
dc.contributor.authorYang, Xiaofanen
dc.contributor.authorLiu, Xinzhien
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:18Z-
dc.date.available2020-05-01T20:13:18Z-
dc.date.issued2014-02-01en
dc.identifier.issn0096-3003en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1420-
dc.description.abstractThis paper applies the part-metric method to study some types of higher-order symmetric difference equations with several different exponential parameters. These difference equations are proved to have unique equilibria and some useful inequalities regarding the difference equation functions are formulated. By use of the part-metric and a result given by Kruse and Nesemann (1999) [8], some sufficient conditions on the parameters are given to guarantee the global asymptotic stability of the equilibria. Furthermore, by the part-metric defined on matrices, this approach is also applicable to show the global asymptotic stability of some cyclic discrete dynamic systems. The results of this paper are considered a big improvement over many existing results found in the literature.en
dc.publisherElsevier-
dc.relationDoctorate Foundation of Educational Ministry of China (Grant No. 20110191110022)-
dc.relationScholarship Award for Excellent Doctoral Student granted by Ministry of Education (No. 0903005109081-10)-
dc.relation.ispartofApplied Mathematics and Computationen
dc.subjectCyclic discrete dynamic system | Difference equation | Global asymptotic stability | Part-metricen
dc.titlePart-metric and its applications in discrete systemsen
dc.typeArticleen
dc.identifier.doi10.1016/j.amc.2013.11.073en
dc.identifier.scopus2-s2.0-84891043703en
dc.relation.firstpage320en
dc.relation.lastpage328en
dc.relation.volume228en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-7202-9764-

#### SCOPUSTM Citations

1
checked on Jul 12, 2024

#### Page view(s)

33
checked on May 9, 2024