DC FieldValueLanguage
dc.contributor.authorStevanović, Draganen
dc.date.accessioned2020-05-01T20:13:06Z-
dc.date.available2020-05-01T20:13:06Z-
dc.date.issued2001-06-01en
dc.identifier.issn0015-0517en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1315-
dc.description.abstractLet MIS stand for the maximal independent set of vertices. Denote the number of MIS of G by MG. Sanders [1] exhibits a tree p(P„), called an extended path, formed by appending a single degree-one vertex to each vertex of a path on n vertices, and proves Mp^P) = Fn+2 • In this paper we Introduce a new class of graphs, called star-like ladders, and show that the number of MIS In star-like ladders has a connection to the Fibonacci numbers. In particular, we show that ML = 2Fp+h where Lp Is the ladder with/? squares. Remember that the ladder Lp, p>\9 Is the graph with 2p + 2 vertices {%¥,-1/ = 0,1,...,p) and edges {utuM, vtvi+l \ i = 0,1,..., p -1} u {u^ | / = 0,1,..., /?}. Two end edges of the ladder Lp are the edges joining vertices of degree 2. The graph obtained by identifying an end edge of ladder Lp with an edge e of a graph G Is denoted by G[e, p]. For the sake of completeness, we will put G[e, 0] = G. If pi,..., pk e N and el9...9ek are the edges of G, then we will write G[(el9...,ek),(#,...,pk)]forG[ex,pj...[ek,pk]. The star-like ladder SL(pl9...,pk)is the graph K2[(e, ...,e),(pl,...,pky],where e Is the edge of K2. We have that Lp = SL(p) = K2 [e, p], p e N-
dc.publisherFibonacci Association-
dc.relation.ispartofFibonacci Quarterlyen
dc.titleOn the number of maximal independent sets of vertices in star-like laddersen
dc.typeArticleen
dc.identifier.scopus2-s2.0-0039845636en
dc.relation.firstpage211en
dc.relation.lastpage220en
dc.relation.issue3en
dc.relation.volume39en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2908-305X-
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 24, 2024

Page view(s)

13
checked on Nov 24, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.