DC FieldValueLanguage
dc.contributor.authorStevanović, Draganen
dc.date.accessioned2020-05-01T20:13:06Z-
dc.date.available2020-05-01T20:13:06Z-
dc.date.issued2002-11-15en
dc.identifier.issn0024-3795en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1312-
dc.description.abstractBack in 1983, D. Cvetković posed the conjecture that the components of NEPS of connected bipartite graphs are almost cospectral. In 2000, we showed that this conjecture does not hold for infinitely many bases of NEPS, and we posed a necessary condition on the base of NEPS for NEPS to have almost cospectral components. At the same time, D. Cvetković posed weaker version of his original conjecture which claims that each eigenvalue of NEPS is also the eigenvalue of each component of NEPS. Here we prove this weaker conjecture, give an upper bound on the multiplicity of an eigenvalue of NEPS as an eigenvalue of its component, give new sufficient condition for the almost cospectrality of components of NEPS of connected bipartite graphs, and characterize the bases of NEPS which satisfy this condition.en
dc.publisherElsevier-
dc.relation.ispartofLinear Algebra and Its Applicationsen
dc.subjectComponents | Cospectrality | Eigenvalues | NEPS of graphsen
dc.titleOn the components of NEPS of connected bipartite graphsen
dc.typeArticleen
dc.identifier.doi10.1016/S0024-3795(02)00322-1en
dc.identifier.scopus2-s2.0-84969220177en
dc.relation.firstpage67en
dc.relation.lastpage78en
dc.relation.issue1-3en
dc.relation.volume356en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2908-305X-
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 24, 2024

Page view(s)

14
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.