DC FieldValueLanguage
dc.contributor.authorStevanović, Draganen
dc.date.accessioned2020-05-01T20:13:06Z-
dc.date.available2020-05-01T20:13:06Z-
dc.date.issued2003-02-01en
dc.identifier.issn0024-3795en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1310-
dc.description.abstractLet λ 1(G) denote the largest eigenvalue of the adjacency matrix and let μ 1(G) denote the largest eigenvalue of the Laplacian matrix of a graph G. It is well known that if a graph G has the largest vertex degree Δ≠0 then Δλ"1(G)Δ and Δ+1μ"1(G)2Δ.Thus the gap between the maximum and minimum value of λ 1(G) and μ 1(G) in the class of graphs with fixed Δ is Θ(Δ). In this note we show that in the class of trees with fixed Δ this gap is just Θ(Δ). Namely, we show that if a tree T has the largest vertex degree Δ thenλ"1(T) <2 Δ-1 and μ"1(T)<Δ+2 Δ-1.New bounds are an improvement for Δ3.en
dc.publisherElsevier-
dc.relation.ispartofLinear Algebra and Its Applicationsen
dc.subjectAdjacency matrix | Laplacian matrix | Largest eigenvalue | Treeen
dc.titleBounding the largest eigenvalue of trees in terms of the largest vertex degreeen
dc.typeArticleen
dc.identifier.doi10.1016/S0024-3795(02)00442-1en
dc.identifier.scopus2-s2.0-84867968386en
dc.relation.firstpage35en
dc.relation.lastpage42en
dc.relation.volume360en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2908-305X-
Show simple item record

SCOPUSTM   
Citations

46
checked on Nov 22, 2024

Page view(s)

20
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.