DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dress, Andreas | en |
dc.contributor.author | Stevanović, Dragan | en |
dc.date.accessioned | 2020-05-01T20:13:05Z | - |
dc.date.available | 2020-05-01T20:13:05Z | - |
dc.date.issued | 2005-01-01 | en |
dc.identifier.issn | 0218-0006 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1302 | - |
dc.description.abstract | In this note, we present an apparently new and rather short proof of a celebrated theorem of Horst Sachs characterizing bipartite finite graphs in term of their eigenvalue spectrum. Moreover, the simplicity of the proof allows us to establish this theorem and related results as a special instance of much more general assertions regarding the spectral theory of "compact graphs". Finally, some intriguing possible generalizations to locally finite, yet not "compact" graphs suggested by Horst Sachs are discussed in the last section. | en |
dc.publisher | Springer Link | - |
dc.relation | Serbian Ministry of Science, Technology and Development, Grant 1227 | - |
dc.relation.ispartof | Annals of Combinatorics | en |
dc.subject | Bipartite graphs | Compact graphs | Eigenvalues of graphs | Harmonic graphs | Locally finite graphs | Semiharmonic graphs | en |
dc.title | A note on a theorem of Horst Sachs | en |
dc.type | Article | en |
dc.identifier.doi | 10.1007/s00026-004-0235-1 | en |
dc.identifier.scopus | 2-s2.0-13844276888 | en |
dc.relation.firstpage | 487 | en |
dc.relation.lastpage | 497 | en |
dc.relation.issue | 4 | en |
dc.relation.volume | 8 | en |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0003-2908-305X | - |
SCOPUSTM
Citations
5
checked on Nov 24, 2024
Page view(s)
16
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.