DC FieldValueLanguage
dc.contributor.authorBrankov, Vladimiren
dc.contributor.authorHansen, Pierreen
dc.contributor.authorStevanović, Draganen
dc.date.accessioned2020-05-01T20:13:04Z-
dc.date.available2020-05-01T20:13:04Z-
dc.date.issued2006-04-15en
dc.identifier.issn0024-3795en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1298-
dc.description.abstractSeveral upper bounds on the largest Laplacian eigenvalue of a graph G, in terms of degree and average degree of neighbors of its vertices, have been proposed in the literature. We show that all these bounds, as well as many conjectured new ones, can be generated systematically using some simple algebraic manipulations. Bounds depending on the edges of G are also generated. Moreover, the interestingness of bounds is discussed, in terms of dominance and tightness. Finally, we give a unified way of proving a sample of these bounds.en
dc.publisherElsevier-
dc.relationSerbian Ministry of Science, Grant 1389-
dc.relationNSERC, Grant #105574–02-
dc.relation.ispartofLinear Algebra and Its Applicationsen
dc.subjectAutomatic generation of conjectures | Conjecture | Graph | Laplacian eigenvalues | Laplacian matrixen
dc.titleAutomated conjectures on upper bounds for the largest Laplacian eigenvalue of graphsen
dc.typeArticleen
dc.identifier.doi10.1016/j.laa.2005.10.017en
dc.identifier.scopus2-s2.0-33644866746en
dc.relation.firstpage407en
dc.relation.lastpage424en
dc.relation.issue2-3en
dc.relation.volume414en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2908-305X-
Show simple item record

SCOPUSTM   
Citations

12
checked on Nov 23, 2024

Page view(s)

18
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.