DC FieldValueLanguage
dc.contributor.authorStevanović, Draganen
dc.contributor.authorde Abreu, Nairen
dc.contributor.authorde Freitas, Mariaen
dc.contributor.authorDel-Vecchio, Renataen
dc.date.accessioned2020-05-01T20:13:04Z-
dc.date.available2020-05-01T20:13:04Z-
dc.date.issued2007-05-01en
dc.identifier.issn0024-3795en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1296-
dc.description.abstractWe establish a useful correspondence between the closed walks in regular graphs and the walks in infinite regular trees, which, after counting the walks of a given length between vertices at a given distance in an infinite regular tree, provides a lower bound on the number of closed walks in regular graphs. This lower bound is then applied to reduce the number of the feasible spectra of the 4-regular bipartite integral graphs by more than a half. Next, we give the details of the exhaustive computer search on all 4-regular bipartite graphs with up to 24 vertices, which yields a total of 47 integral graphs.en
dc.publisherElsevier-
dc.relation.ispartofLinear Algebra and Its Applicationsen
dc.subjectBipartite graphs | Graph eigenvalues | Integral graphs | Regular graphsen
dc.titleWalks and regular integral graphsen
dc.typeArticleen
dc.identifier.doi10.1016/j.laa.2006.11.026en
dc.identifier.scopus2-s2.0-33947275052en
dc.relation.firstpage119en
dc.relation.lastpage135en
dc.relation.issue1en
dc.relation.volume423en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2908-305X-
Show simple item record

SCOPUSTM   
Citations

14
checked on Nov 23, 2024

Page view(s)

22
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.