DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stevanović, Dragan | en |
dc.contributor.author | Ilić, Aleksandar | en |
dc.date.accessioned | 2020-05-01T20:13:03Z | - |
dc.date.available | 2020-05-01T20:13:03Z | - |
dc.date.issued | 2009-04-15 | en |
dc.identifier.issn | 0024-3795 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1288 | - |
dc.description.abstract | Let G be a graph of order n and let P (G, λ) = ∑k = 0n (- 1)k ck λn - k be the characteristic polynomial of its Laplacian matrix. Generalizing an approach of Mohar on graph transformations, we show that among all connected unicyclic graphs of order n, the kth coefficient ck is largest when the graph is a cycle Cn and smallest when the graph is the a Sn with an additional edge between two of its pendent vertices. A relation to the recently established Laplacian-like energy of a graph is discussed. | en |
dc.publisher | Elsevier | - |
dc.relation | Serbian Ministry of Science and Technological Development, Grants 144007 and 144015G | - |
dc.relation | Slovenian Agency for Research, program P1-0285 | - |
dc.relation.ispartof | Linear Algebra and Its Applications | en |
dc.subject | Laplacian coefficients | Laplacian matrix | Laplacian-like energy | Unicyclic graph | en |
dc.title | On the Laplacian coefficients of unicyclic graphs | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.laa.2008.12.006 | en |
dc.identifier.scopus | 2-s2.0-61849108196 | en |
dc.relation.firstpage | 2290 | en |
dc.relation.lastpage | 2300 | en |
dc.relation.issue | 8-9 | en |
dc.relation.volume | 430 | en |
dc.description.rank | M22 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.orcid | 0000-0003-2908-305X | - |
SCOPUSTM
Citations
61
checked on Feb 4, 2025
Page view(s)
21
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.