DC FieldValueLanguage
dc.contributor.authorIlić, Aleksandaren
dc.contributor.authorStevanović, Draganen
dc.date.accessioned2020-05-01T20:13:02Z-
dc.date.available2020-05-01T20:13:02Z-
dc.date.issued2009-11-01en
dc.identifier.issn0893-9659en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1278-
dc.description.abstractToken ring topology has been frequently used in the design of distributed loop computer networks and one measure of its performance is the diameter. We propose an algorithm for constructing hamiltonian graphs with n vertices, maximum degree Δ and diameter O (log n), where n is an arbitrary number. The number of edges is asymptotically bounded by (2 - frac(1, Δ - 1) - frac((Δ - 2)2, (Δ - 1)3)) n. In particular, we construct a family of hamiltonian graphs with diameter at most 2 ⌊ log2 n ⌋, maximum degree 3 and at most 1 + 11 n / 8 edges.en
dc.publisherElsevier-
dc.relationSlovenian Agency for Research, program P1-0285-
dc.relationSerbian Ministry of Science and Technological Development, Grant 144007-
dc.relation.ispartofApplied Mathematics Lettersen
dc.subjectBinary tree | Diameter | Graph algorithm | Hamiltonian cycle | Token ringen
dc.titleConstructions of hamiltonian graphs with bounded degree and diameter O (log n)en
dc.typeArticleen
dc.identifier.doi10.1016/j.aml.2009.06.010en
dc.identifier.scopus2-s2.0-70349230885en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage1715en
dc.relation.lastpage1720en
dc.relation.issue11en
dc.relation.volume22en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-2908-305X-
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 27, 2024

Page view(s)

22
checked on Dec 27, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.