DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ilić, Aleksandar | en |
dc.contributor.author | Stevanović, Dragan | en |
dc.date.accessioned | 2020-05-01T20:13:02Z | - |
dc.date.available | 2020-05-01T20:13:02Z | - |
dc.date.issued | 2009-11-01 | en |
dc.identifier.issn | 0893-9659 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1278 | - |
dc.description.abstract | Token ring topology has been frequently used in the design of distributed loop computer networks and one measure of its performance is the diameter. We propose an algorithm for constructing hamiltonian graphs with n vertices, maximum degree Δ and diameter O (log n), where n is an arbitrary number. The number of edges is asymptotically bounded by (2 - frac(1, Δ - 1) - frac((Δ - 2)2, (Δ - 1)3)) n. In particular, we construct a family of hamiltonian graphs with diameter at most 2 ⌊ log2 n ⌋, maximum degree 3 and at most 1 + 11 n / 8 edges. | en |
dc.publisher | Elsevier | - |
dc.relation | Slovenian Agency for Research, program P1-0285 | - |
dc.relation | Serbian Ministry of Science and Technological Development, Grant 144007 | - |
dc.relation.ispartof | Applied Mathematics Letters | en |
dc.subject | Binary tree | Diameter | Graph algorithm | Hamiltonian cycle | Token ring | en |
dc.title | Constructions of hamiltonian graphs with bounded degree and diameter O (log n) | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.aml.2009.06.010 | en |
dc.identifier.scopus | 2-s2.0-70349230885 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 1715 | en |
dc.relation.lastpage | 1720 | en |
dc.relation.issue | 11 | en |
dc.relation.volume | 22 | en |
dc.description.rank | M22 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0003-2908-305X | - |
SCOPUSTM
Citations
1
checked on Dec 27, 2024
Page view(s)
22
checked on Dec 27, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.