DC FieldValueLanguage
dc.contributor.authorIlić, Aleksandaren
dc.contributor.authorIlić, Andrejaen
dc.contributor.authorStevanović, Draganen
dc.date.accessioned2020-05-01T20:13:02Z-
dc.date.available2020-05-01T20:13:02Z-
dc.date.issued2010-07-16en
dc.identifier.issn0340-6253en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1272-
dc.description.abstractLet G be a simple undirected n-vertex graph with the characteristic polynomial of its Laplacian matrix L(G), det(λI - L(G)) = Σk=0n (-1)kckλ n-k. It is well known that for trees the Laplacian coefficient c n-2 is equal to the Wiener index of G. Using a result of Zhou and Gutman on the relation between the Laplacian coefficients and the matching numbers in subdivided bipartite graphs, we characterize first the trees with given diameter and then the connected graphs with given radius which simultaneously minimize all Laplacian coefficients. This approach generalizes recent results of Liu and Pan [MATCH Commun. Math. Comput. Chem. 60 (2008), 85-94] and Wang and Guo [MATCH Commun. Math. Comput. Chem. 60 (2008), 609-622] who characterized n-vertex trees with fixed diameter d which minimize the Wiener index. In conclusion, we illustrate on examples with Wiener and modified hyper-Wiener index that the opposite problem of simultaneously maximizing all Laplacian coefficients has no solution.en
dc.publisherFaculty of Sciences, University of Kragujevac-
dc.relationSlovenian Agency for Research, program P1-0285-
dc.relationSerbian Ministry of Science, Grant no. 144015G-
dc.relation.ispartofMatchen
dc.titleOn the wiener index and laplacian coefficients of graphs with given diameter or radiusen
dc.typeArticleen
dc.identifier.scopus2-s2.0-70049109782en
dc.relation.firstpage91en
dc.relation.lastpage100en
dc.relation.issue1en
dc.relation.volume63en
dc.description.rankM21a-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2908-305X-
Show simple item record

SCOPUSTM   
Citations

25
checked on Nov 25, 2024

Page view(s)

30
checked on Nov 24, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.