DC FieldValueLanguage
dc.contributor.authorIlić, Aleksandaren
dc.contributor.authorStevanović, Draganen
dc.contributor.authorFeng, Lihuaen
dc.contributor.authorYu, Guihaien
dc.contributor.authorDankelmann, Peteren
dc.date.accessioned2020-05-01T20:13:01Z-
dc.date.available2020-05-01T20:13:01Z-
dc.date.issued2011-04-28en
dc.identifier.issn0166-218Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1267-
dc.description.abstractLet G be a connected graph with vertex set V(G). The degree distance of G is defined as D′(G)=∑u,v⊆V(G)(degG(u)+degG(v))d(u,v), where degG(u) is the degree of vertex u, and d(u,v) denotes the distance between u and v. Here we characterize n-vertex unicyclic graphs with girth k, having minimum and maximum degree distance, respectively. Furthermore, we prove that the graph Bn, obtained from two triangles linked by a path, is the unique graph having the maximum degree distance among bicyclic graphs, which resolves a recent conjecture of Tomescu.en
dc.publisherElsevier-
dc.relationNNSFC (Nos. 70901048, 10871205)-
dc.relationNSFSD (Nos. BS2010SF017, Y2008A04)-
dc.relationSerbian Ministry of Science, Project 144007 and 144015G-
dc.relationSlovenian Agency for Research, Program P1-0285-
dc.relation.ispartofDiscrete Applied Mathematicsen
dc.subjectBicyclic graph | Degree distance | Girth | Wiener indexen
dc.titleDegree distance of unicyclic and bicyclic graphsen
dc.typeArticleen
dc.identifier.doi10.1016/j.dam.2011.01.013en
dc.identifier.scopus2-s2.0-79952538800en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage779en
dc.relation.lastpage788en
dc.relation.issue8en
dc.relation.volume159en
dc.description.rankM22-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-2908-305X-
Show simple item record

SCOPUSTM   
Citations

54
checked on Apr 2, 2025

Page view(s)

34
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.