DC FieldValueLanguage
dc.contributor.authorMilošević, Markoen
dc.contributor.authorRéti, Tamásen
dc.contributor.authorStevanović, Draganen
dc.date.accessioned2020-05-01T20:13:00Z-
dc.date.available2020-05-01T20:13:00Z-
dc.date.issued2012-12-01en
dc.identifier.issn0340-6253en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1258-
dc.description.abstractLet Φ(z), z ∈ ℤ, be the set of all connected graphs whose difference of the second and the first Zagreb index is equal to z. We show that Φ(z) contains exactly one element, a star, for z < -2, while it is infinite for z ≥ -2. Moreover, all elements of Φ(-2) and Φ(-1) are trees, while Φ(0), besides trees, contains the cycles only Constructions of new elements of Φ(z) from the existing ones are based on the existence of vertices of degree two. We further show that the only elements of J z≤0Φ(z), which do not contain vertices of degree two, are stars and the molecular graphs of 2,3-dimethylbutane and 2,2,3-trimethylbutane.en
dc.publisherFaculty of Sciences, University of Kragujevac-
dc.relationGraph theory and mathematical programming with applications in chemistry and computer science-
dc.relationSlovenian Research Agency, research grants P1-0285 and J1-4021-
dc.relation.ispartofMatchen
dc.titleOn the constant difference of Zagreb Indicesen
dc.typeArticleen
dc.identifier.scopus2-s2.0-84897726758en
dc.relation.firstpage157en
dc.relation.lastpage168en
dc.relation.issue1en
dc.relation.volume68en
dc.description.rankM21a-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174033e.php-
crisitem.project.fundingProgramDirectorate for Computer & Information Science & Engineering-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Computer & Information Science & Engineering/1740333-
crisitem.author.orcid0000-0003-2908-305X-
Show simple item record

SCOPUSTM   
Citations

23
checked on Dec 20, 2024

Page view(s)

19
checked on Dec 22, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.