DC FieldValueLanguage
dc.contributor.authorStevanović, Draganen
dc.contributor.authorMilanič, Martinen
dc.date.accessioned2020-05-01T20:13:00Z-
dc.date.available2020-05-01T20:13:00Z-
dc.date.issued2012-12-01en
dc.identifier.issn0340-6253en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1257-
dc.description.abstractFor a simple graph G with n vertices and m edges, let M1 and M2 denote the first and the second Zagreb index of G. The inequality M1/n ≤ M2/m in the case of trees has been proved first by Vukičević and Graovac [MATCH Commun. Math. Comput. Chem. 57 (2007), 587-590], and a new proof has been found recently by Andova, Cohen and Škrekovski [Ars Math. Contemp. 5 (2012), 73-76]. Here we improve this inequality by showing that, if T is not a star, then nM2 - mM 1 ≥ 2(n - 3) + (Δ - 1)(Δ - 2), where Δ is the maximum vertex degree in T.en
dc.publisherFaculty of Sciences, University of Kragujevac-
dc.relationSlovenian Research Agency, projects P1-0285, J1-4010 and J1-4021-
dc.relationGraph theory and mathematical programming with applications in chemistry and computer science-
dc.relation.ispartofMatchen
dc.titleImproved inequality between zagreb indices of treesen
dc.typeArticleen
dc.identifier.scopus2-s2.0-84898728405en
dc.relation.firstpage147en
dc.relation.lastpage156en
dc.relation.issue1en
dc.relation.volume68en
dc.description.rankM21a-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174033e.php-
crisitem.project.fundingProgramDirectorate for Computer & Information Science & Engineering-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Computer & Information Science & Engineering/1740333-
crisitem.author.orcid0000-0003-2908-305X-
Show simple item record

SCOPUSTM   
Citations

17
checked on Nov 25, 2024

Page view(s)

14
checked on Nov 25, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.