| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Da Fonseca, Carlos | en |
| dc.contributor.author | Ghebleh, Mohammad | en |
| dc.contributor.author | Kanso, Ali | en |
| dc.contributor.author | Stevanović, Dragan | en |
| dc.date.accessioned | 2020-05-01T20:13:00Z | - |
| dc.date.available | 2020-05-01T20:13:00Z | - |
| dc.date.issued | 2014-01-01 | en |
| dc.identifier.issn | 0340-6253 | en |
| dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1251 | - |
| dc.description.abstract | For a simple graph G, the common neighborhood graph con(G) is the graph with the same vertex set as G, with two vertices adjacent in con(G) if they have a common neighbor in G. We describe here constructions of counterexamples to a conjecture of Knor et al. [MATCH Commun. Math. Comput. Chem. 72 (2014), 000-000] that there exists an absolute constant C such that for every graph G it holds that W(con(G)) ≤ C .W(G), where W(G) denotes the Wiener index of G. | en |
| dc.publisher | Faculty of Sciences, University of Kragujevac | - |
| dc.relation.ispartof | Match | en |
| dc.title | Counterexamples to a conjecture on wiener index of common neighborhood graphs | en |
| dc.type | Article | en |
| dc.identifier.scopus | 2-s2.0-84908459950 | en |
| dc.relation.firstpage | 333 | en |
| dc.relation.lastpage | 338 | en |
| dc.relation.issue | 1 | en |
| dc.relation.volume | 72 | en |
| dc.description.rank | M21 | - |
| item.cerifentitytype | Publications | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.grantfulltext | none | - |
| item.openairetype | Article | - |
| item.fulltext | No Fulltext | - |
| crisitem.author.orcid | 0000-0003-2908-305X | - |
SCOPUSTM
Citations
26
checked on Jan 28, 2026
Page view(s)
89
checked on Jan 29, 2026
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.