DC FieldValueLanguage
dc.contributor.authorMajstorović, Snježanaen
dc.contributor.authorStevanović, Draganen
dc.date.accessioned2020-05-01T20:12:59Z-
dc.date.available2020-05-01T20:12:59Z-
dc.date.issued2014-01-01en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1248-
dc.description.abstractInformally, a community within a graph is a subgraph whose vertices are more connected to one another than to the vertices outside the community. One of the most popular community detection methods is the Newman’s spectral modularity maximization algorithm, which divides a graph into two communities based on the signs of the principal eigenvector of its modularity matrix in the case that the modularity matrix has positive largest eigenvalue. Newman defined a graph to be indivisible if its modularity matrix has no positive eigenvalues. It is shown here that a graph is indivisible if and only if it is a complete multipartite graph.en
dc.publisherInternational Linear Algebra Society-
dc.relationSlovenian Research Agency, Projects P1-0285 and J1-4021-
dc.relationGraph theory and mathematical programming with applications in chemistry and computer science-
dc.relation.ispartofElectronic Journal of Linear Algebraen
dc.subjectCommunity structure | Complete multipartite graph | Largest eigenvalue | Modularity matrixen
dc.titleA note on graphs whose largest eigenvalue of the modularity matrix equals zeroen
dc.typeArticleen
dc.identifier.scopus2-s2.0-84908214952en
dc.relation.firstpage611en
dc.relation.lastpage618en
dc.relation.volume27en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174033e.php-
crisitem.project.fundingProgramDirectorate for Computer & Information Science & Engineering-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Computer & Information Science & Engineering/1740333-
crisitem.author.orcid0000-0003-2908-305X-
Show simple item record

SCOPUSTM   
Citations

6
checked on Dec 20, 2024

Page view(s)

20
checked on Dec 21, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.