DC FieldValueLanguage
dc.contributor.authorIndulal, Gopalapillaien
dc.contributor.authorStevanović, Draganen
dc.date.accessioned2020-05-01T20:12:58Z-
dc.date.available2020-05-01T20:12:58Z-
dc.date.issued2015-11-01en
dc.identifier.issn0972-8600en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1237-
dc.description.abstractLet G be a connected graph with a distance matrix D. The D-eigenvalues {μ1, μ2, . . ., . . ., μp} of G are the eigenvalues of D and form the distance spectrum or D-spectrum of G. Given two graphs G with vertex set {v1,v2,. . .. . .,vp} and H, the corona G-H is defined as the graph obtained by taking p copies of H and for each i, joining the ith vertex of G to all the vertices in the ith copy of H. Let H be a rooted graph rooted at u. Then the cluster G{H} is defined as the graph obtained by taking p copies of H and for each i, joining the ith vertex of G to the root in the ith copy of H. In this paper we describe the distance spectrum of G-H, for a connected distance regular graph G and any r-regular graph H in terms of the distance spectrum of G and adjacency spectrum of H. We also describe the distance spectrum of G{Kn}, where G is a connected distance regular graph.en
dc.publisherElsevier-
dc.relationUniversity Grant Commission of Government of India, Grant No. MRP(S)-399/08-09/KLMG019/UGC-SWRO-
dc.relation.ispartofAKCE International Journal of Graphs and Combinatoricsen
dc.subjectCluster | Corona | Distance spectrumen
dc.titleThe distance spectrum of corona and cluster of two graphsen
dc.typeArticleen
dc.identifier.doi10.1016/j.akcej.2015.11.014en
dc.identifier.scopus2-s2.0-84951769539en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage186en
dc.relation.lastpage192en
dc.relation.issue2-3en
dc.relation.volume12en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-2908-305X-
Show simple item record

SCOPUSTM   
Citations

13
checked on Apr 3, 2025

Page view(s)

18
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.