DC FieldValueLanguage
dc.contributor.authorStevanović, Draganen
dc.date.accessioned2020-05-01T20:12:58Z-
dc.date.available2020-05-01T20:12:58Z-
dc.date.issued2016-01-01en
dc.identifier.issn1855-3966en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1235-
dc.description.abstractWhile discussing his spectral bound on the independence number of a graph, Herbert Wilf asked back in 1986 what kind of a graph admits an eigenvector consisting solely of ±1 entries? We prove that Wilf's problem is NP-complete, but also that the set of graphs having a ±1 eigenvector is quite rich, being closed under a number of different graph compositions.en
dc.publisherDMFA Slovenije-
dc.relationSlovenian Research Agency, program P1-0285 and the research projects J1-5433, J1-6720, J1-6743, and J7-6828-
dc.relationGraph theory and mathematical programming with applications in chemistry and computer science-
dc.relation.ispartofArs Mathematica Contemporaneaen
dc.subjectAdjacency matrix | Eigenvector | Wilf's problemen
dc.titleOn ±1 eigenvectors of graphsen
dc.typeArticleen
dc.identifier.doi10.26493/1855-3974.1021.c0a-
dc.identifier.scopus2-s2.0-85007518933en
dc.relation.firstpage415en
dc.relation.lastpage423en
dc.relation.issue2en
dc.relation.volume11en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174033e.php-
crisitem.project.fundingProgramDirectorate for Computer & Information Science & Engineering-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Computer & Information Science & Engineering/1740333-
crisitem.author.orcid0000-0003-2908-305X-
Show simple item record

SCOPUSTM   
Citations

4
checked on Dec 20, 2024

Page view(s)

17
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.