DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stanojević, Milan | en |
dc.contributor.author | Vujošević, Mirko | en |
dc.contributor.author | Stanojević, Bogdana | en |
dc.date.accessioned | 2020-05-01T20:12:56Z | - |
dc.date.available | 2020-05-01T20:12:56Z | - |
dc.date.issued | 2008-01-01 | en |
dc.identifier.issn | 1841-9836 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1215 | - |
dc.description.abstract | The number of efficient points in criteria space of multiple objective combinatorial optimization problems is considered in this paper. It is concluded that under certain assumptions, that number grows polynomially although the number of Pareto optimal solutions grows exponentially with the problem size. In order to perform experiments, an original algorithm for obtaining all efficient points was formulated and implemented for three classical multiobjective combinatorial optimization problems. Experimental results with the shortest path problem, the Steiner tree problem on graphs and the traveling salesman problem show that the number of efficient points is much lower than a polynomial upper bound. | en |
dc.publisher | Agora University | - |
dc.relation.ispartof | International Journal of Computers, Communications and Control | en |
dc.subject | Combinatorial optimization | Complexity of computation | Multiple objective optimization | en |
dc.title | Computation results of finding all efficient points in multiobjective combinatorial optimization | en |
dc.type | Article | en |
dc.identifier.doi | 10.15837/ijccc.2008.4.2405 | en |
dc.identifier.scopus | 2-s2.0-56549097876 | en |
dc.relation.firstpage | 374 | en |
dc.relation.lastpage | 383 | en |
dc.relation.issue | 4 | en |
dc.relation.volume | 3 | en |
dc.description.rank | M50 | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
crisitem.author.orcid | 0000-0003-4524-5354 | - |
SCOPUSTM
Citations
4
checked on Nov 19, 2024
Page view(s)
13
checked on Nov 19, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.