DC FieldValueLanguage
dc.contributor.authorCvetković, Dragošen
dc.contributor.authorRowlinson, Peteren
dc.contributor.authorSimić, Slobodanen
dc.date.accessioned2020-05-01T20:12:52Z-
dc.date.available2020-05-01T20:12:52Z-
dc.date.issued2001-01-01en
dc.identifier.issn0925-9899en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1183-
dc.description.abstractLet G be a connected graph with least eigenvalue -2, of multiplicity k. A star complement for -2 in G is an induced subgraph H = G - X such that |X| = k and -2 is not an eigenvalue of H. In the case that G is a generalized line graph, a characterization of such subgraphs is used to decribe the eigenspace of -2. In some instances, G itself can be characterized by a star complement. If G is not a generalized line graph, G is an exceptional graph, and in this case it is shown how a star complement can be used to construct G without recourse to root systems.en
dc.publisherSpringer Link-
dc.relationEPSRC, Grant GR/L94901-
dc.relation.ispartofJournal of Algebraic Combinatoricsen
dc.subjectEigenspace | Eigenvalue | Graphen
dc.titleGraphs with Least Eigenvalue - 2: The Star Complement Techniqueen
dc.typeArticleen
dc.identifier.doi10.1023/A:1011209801191en
dc.identifier.scopus2-s2.0-0035387053en
dc.relation.firstpage5en
dc.relation.lastpage16en
dc.relation.issue1en
dc.relation.volume14en
dc.description.rankM21a-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Show simple item record

SCOPUSTM   
Citations

24
checked on Nov 23, 2024

Page view(s)

23
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.