DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cvetković, Dragoš | en |
dc.contributor.author | Rowlinson, Peter | en |
dc.contributor.author | Simić, Slobodan | en |
dc.date.accessioned | 2020-05-01T20:12:52Z | - |
dc.date.available | 2020-05-01T20:12:52Z | - |
dc.date.issued | 2001-01-01 | en |
dc.identifier.issn | 0925-9899 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1183 | - |
dc.description.abstract | Let G be a connected graph with least eigenvalue -2, of multiplicity k. A star complement for -2 in G is an induced subgraph H = G - X such that |X| = k and -2 is not an eigenvalue of H. In the case that G is a generalized line graph, a characterization of such subgraphs is used to decribe the eigenspace of -2. In some instances, G itself can be characterized by a star complement. If G is not a generalized line graph, G is an exceptional graph, and in this case it is shown how a star complement can be used to construct G without recourse to root systems. | en |
dc.publisher | Springer Link | - |
dc.relation | EPSRC, Grant GR/L94901 | - |
dc.relation.ispartof | Journal of Algebraic Combinatorics | en |
dc.subject | Eigenspace | Eigenvalue | Graph | en |
dc.title | Graphs with Least Eigenvalue - 2: The Star Complement Technique | en |
dc.type | Article | en |
dc.identifier.doi | 10.1023/A:1011209801191 | en |
dc.identifier.scopus | 2-s2.0-0035387053 | en |
dc.relation.firstpage | 5 | en |
dc.relation.lastpage | 16 | en |
dc.relation.issue | 1 | en |
dc.relation.volume | 14 | en |
dc.description.rank | M21a | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.