DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cvetković, Dragoš | en |
dc.contributor.author | Simić, Slobodan | en |
dc.contributor.author | Caporossi, Gilles | en |
dc.contributor.author | Hansen, Pierre | en |
dc.date.accessioned | 2020-05-01T20:12:52Z | - |
dc.date.available | 2020-05-01T20:12:52Z | - |
dc.date.issued | 2001-12-01 | en |
dc.identifier.issn | 0308-1087 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1181 | - |
dc.description.abstract | In the set of bicolored trees with given numbers of black and of white vertices we describe those for which the largest eigenvalue is extremal (maximal or minimal). The results are first obtained by the automated system AutoGraphiX, developed in GERAD (Montreal), and verified afterwards by theoretical means. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group. | en |
dc.publisher | Taylor & Francis | - |
dc.relation.ispartof | Linear and Multilinear Algebra | en |
dc.subject | Automated discovery | Eigenvalues | Graph theory | Index | en |
dc.title | Variable neighborhood search for extremal graphs 3. On the largest eigenvalue of color-constrained trees | en |
dc.type | Article | en |
dc.identifier.doi | 10.1080/03081080108818690 | - |
dc.identifier.scopus | 2-s2.0-0013151445 | en |
dc.relation.firstpage | 143 | en |
dc.relation.lastpage | 160 | en |
dc.relation.issue | 2 | en |
dc.relation.volume | 49 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
SCOPUSTM
Citations
26
checked on Apr 3, 2025
Page view(s)
25
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.