DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bell, Francis | en |
dc.contributor.author | Cvetković, Dragoš | en |
dc.contributor.author | Rowlinson, Peter | en |
dc.contributor.author | Simić, Slobodan | en |
dc.date.accessioned | 2020-05-01T20:12:50Z | - |
dc.date.available | 2020-05-01T20:12:50Z | - |
dc.date.issued | 2008-07-01 | en |
dc.identifier.issn | 0024-3795 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1164 | - |
dc.description.abstract | Let G be a connected graph whose least eigenvalue λ(G) is minimal among the connected graphs of prescribed order and size. We show first that either G is complete or λ(G) is a simple eigenvalue. In the latter case, the sign pattern of a corresponding eigenvector determines a partition of the vertex set, and we study the structure of G in terms of this partition. We find that G is either bipartite or the join of two graphs of a simple form. | en |
dc.publisher | Elsevier | - |
dc.relation | EPSRC, Grant EP/D010748/1 | - |
dc.relation | Serbian Ministry for Science, Grant 144015G | - |
dc.relation.ispartof | Linear Algebra and Its Applications | en |
dc.subject | Graph spectrum | Largest eigenvalue | Least eigenvalue | Nested split graph | en |
dc.title | Graphs for which the least eigenvalue is minimal, I | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.laa.2008.02.032 | en |
dc.identifier.scopus | 2-s2.0-43049137654 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 234 | en |
dc.relation.lastpage | 241 | en |
dc.relation.issue | 1 | en |
dc.relation.volume | 429 | en |
dc.description.rank | M22 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
SCOPUSTM
Citations
71
checked on Apr 3, 2025
Page view(s)
25
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.