DC FieldValueLanguage
dc.contributor.authorBell, Francisen
dc.contributor.authorCvetković, Dragošen
dc.contributor.authorRowlinson, Peteren
dc.contributor.authorSimić, Slobodanen
dc.date.accessioned2020-05-01T20:12:50Z-
dc.date.available2020-05-01T20:12:50Z-
dc.date.issued2008-10-16en
dc.identifier.issn0024-3795en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1163-
dc.description.abstractWe continue our investigation of graphs G for which the least eigenvalue λ (G) is minimal among the connected graphs of prescribed order and size. We provide structural details of the bipartite graphs that arise, and study the behaviour of λ (G) as the size increases while the order remains constant. The non-bipartite graphs that arise were investigated in a previous paper [F.K. Bell, D. Cvetković, P. Rowlinson, S.K. Simić, Graphs for which the least eigenvalue is minimal, I, Linear Algebra Appl. (2008), doi: 10.1016/j.laa.2008.02.032]; here we distinguish the cases of bipartite and non-bipartite graphs in terms of size.en
dc.publisherElsevier-
dc.relationEPSRC, Grant EP/D010748/1-
dc.relationSerbian Ministry for Science, Grant 144015G-
dc.relation.ispartofLinear Algebra and Its Applicationsen
dc.subjectBipartite graph | Graph spectrum | Largest eigenvalue | Least eigenvalueen
dc.titleGraphs for which the least eigenvalue is minimal, IIen
dc.typeArticleen
dc.identifier.doi10.1016/j.laa.2008.06.018en
dc.identifier.scopus2-s2.0-49349116764en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage2168en
dc.relation.lastpage2179en
dc.relation.issue8-9en
dc.relation.volume429en
dc.description.rankM22-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
Show simple item record

SCOPUSTM   
Citations

56
checked on Apr 18, 2025

Page view(s)

21
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.