DC FieldValueLanguage
dc.contributor.authorBelardo, Francescoen
dc.contributor.authorLi Marzi, Enzoen
dc.contributor.authorSimić, Slobodanen
dc.contributor.authorWang, Jianfengen
dc.date.accessioned2020-05-01T20:12:49Z-
dc.date.available2020-05-01T20:12:49Z-
dc.date.issued2010-03-01en
dc.identifier.issn0911-0119en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1155-
dc.description.abstractWe consider the following two classes of simple graphs: open necklaces and closed necklaces, consisting of a finite number of cliques of fixed orders arranged in path-like pattern and cycle-like pattern, respectively. In these two classes we determine those graphs whose index (the largest eigenvalue of the adjacency matrix) is maximal.en
dc.publisherSpringer Link-
dc.relation.ispartofGraphs and Combinatoricsen
dc.subjectAdjacency spectrum | Caterpillars | Largest eigenvalue | Line graphs | Signless Laplacian spectrum | Unicyclic graphsen
dc.titleOn the index of necklacesen
dc.typeArticleen
dc.identifier.doi10.1007/s00373-010-0910-4en
dc.identifier.scopus2-s2.0-77953325848en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage163en
dc.relation.lastpage172en
dc.relation.issue2en
dc.relation.volume26en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 23, 2024

Page view(s)

13
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.