DC Field | Value | Language |
---|---|---|
dc.contributor.author | Geng, Xianya | en |
dc.contributor.author | Li, Shuchao | en |
dc.contributor.author | Simić, Slobodan | en |
dc.date.accessioned | 2020-05-01T20:12:48Z | - |
dc.date.available | 2020-05-01T20:12:48Z | - |
dc.date.issued | 2010-12-15 | en |
dc.identifier.issn | 0024-3795 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1144 | - |
dc.description.abstract | A connected graph G=(VG,EG) is called a quasi-k-cyclic graph, if there exists a vertex q∈VG such that G-q is a k-cyclic graph (connected with cyclomatic number k). In this paper we identify in the set of quasi-k-cyclic graphs (for k≤3) those graphs whose spectral radius of the adjacency matrix (and the signless Laplacian if k≤2) is the largest. In addition, for quasi-unicyclic graphs we identify as well those graphs whose spectral radius of the adjacency matrix is the second largest. | en |
dc.publisher | Elsevier | - |
dc.relation | Serbian Ministry for Science (Grant No. 144015G) | - |
dc.relation.ispartof | Linear Algebra and Its Applications | en |
dc.subject | Adjacency spectrum | k-Cyclic graph | Quasi-k-cyclic graph | Signless Laplacian spectrum | Spectral radius | en |
dc.title | On the spectral radius of quasi-k-cyclic graphs | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.laa.2010.06.007 | en |
dc.identifier.scopus | 2-s2.0-77955443908 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 1561 | en |
dc.relation.lastpage | 1572 | en |
dc.relation.issue | 8-10 | en |
dc.relation.volume | 433 | en |
dc.description.rank | M22 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
SCOPUSTM
Citations
7
checked on Apr 1, 2025
Page view(s)
23
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.