DC FieldValueLanguage
dc.contributor.authorWang, Jianfengen
dc.contributor.authorSimić, Slobodanen
dc.contributor.authorHuang, Qiongxiangen
dc.contributor.authorBelardo, Francescoen
dc.contributor.authorLi Marzi, Enzoen
dc.date.accessioned2020-05-01T20:12:48Z-
dc.date.available2020-05-01T20:12:48Z-
dc.date.issued2011-05-01en
dc.identifier.issn0308-1087en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1140-
dc.description.abstractThe Laplacian spectrum of a graph consists of the eigenvalues (together with multiplicities) of the Laplacian matrix. In this article we determine, among the graphs consisting of disjoint unions of paths and cycles, those ones which are determined by the Laplacian spectrum. For the graphs, which are not determined by the Laplacian spectrum, we give the corresponding cospectral non-isomorphic graphs.en
dc.publisherTaylor & Francis-
dc.relationNSFC, Grant No. 10961023-
dc.relationSerbian Ministry of Science, Project 144015G-
dc.relationXGEDU, 2009 S20-
dc.relation.ispartofLinear and Multilinear Algebraen
dc.subjectCospectral graphs | Laplacian spectrum | Spectral characterization | Spectral determinationen
dc.titleLaplacian spectral characterization of disjoint union of paths and cyclesen
dc.typeArticleen
dc.identifier.doi10.1080/03081081003605777en
dc.identifier.scopus2-s2.0-79957572488en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage531en
dc.relation.lastpage539en
dc.relation.issue5en
dc.relation.volume59en
dc.description.rankM21-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Show simple item record

SCOPUSTM   
Citations

10
checked on Apr 3, 2025

Page view(s)

24
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.