DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wang, Jianfeng | en |
dc.contributor.author | Simić, Slobodan | en |
dc.contributor.author | Huang, Qiongxiang | en |
dc.contributor.author | Belardo, Francesco | en |
dc.contributor.author | Li Marzi, Enzo | en |
dc.date.accessioned | 2020-05-01T20:12:48Z | - |
dc.date.available | 2020-05-01T20:12:48Z | - |
dc.date.issued | 2011-05-01 | en |
dc.identifier.issn | 0308-1087 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1140 | - |
dc.description.abstract | The Laplacian spectrum of a graph consists of the eigenvalues (together with multiplicities) of the Laplacian matrix. In this article we determine, among the graphs consisting of disjoint unions of paths and cycles, those ones which are determined by the Laplacian spectrum. For the graphs, which are not determined by the Laplacian spectrum, we give the corresponding cospectral non-isomorphic graphs. | en |
dc.publisher | Taylor & Francis | - |
dc.relation | NSFC, Grant No. 10961023 | - |
dc.relation | Serbian Ministry of Science, Project 144015G | - |
dc.relation | XGEDU, 2009 S20 | - |
dc.relation.ispartof | Linear and Multilinear Algebra | en |
dc.subject | Cospectral graphs | Laplacian spectrum | Spectral characterization | Spectral determination | en |
dc.title | Laplacian spectral characterization of disjoint union of paths and cycles | en |
dc.type | Article | en |
dc.identifier.doi | 10.1080/03081081003605777 | en |
dc.identifier.scopus | 2-s2.0-79957572488 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 531 | en |
dc.relation.lastpage | 539 | en |
dc.relation.issue | 5 | en |
dc.relation.volume | 59 | en |
dc.description.rank | M21 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
SCOPUSTM
Citations
10
checked on Apr 3, 2025
Page view(s)
24
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.