DC Field | Value | Language |
---|---|---|
dc.contributor.author | Biyikoglu, Turker | en |
dc.contributor.author | Simić, Slobodan | en |
dc.contributor.author | Stanić, Zoran | en |
dc.date.accessioned | 2020-05-01T20:12:48Z | - |
dc.date.available | 2020-05-01T20:12:48Z | - |
dc.date.issued | 2011-07-01 | en |
dc.identifier.issn | 0381-7032 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1139 | - |
dc.description.abstract | A cograph is a P4-free graph. We first give a short proof of the fact that 0 (-1) belongs to the spectrum of a connected cograph (with at least two vertices) if and only if it contains duplicate (resp. coduplicate) vertices. As a consequence, we next prove that the polynomial reconstruction of graphs whose vertex-deleted subgraphs have the second largest eigenvalue not exceeding √5-1/2 is unique. | en |
dc.publisher | Charles Babbage Research Centre | - |
dc.relation.ispartof | Ars Combinatoria | en |
dc.subject | σ-graph | Characteristic polynomial | Cograph | Eigenvalues | Polynomial reconstruction | en |
dc.title | Some notes on spectra of cographs | en |
dc.type | Article | en |
dc.identifier.scopus | 2-s2.0-79959471030 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 421 | en |
dc.relation.lastpage | 434 | en |
dc.relation.volume | 100 | en |
dc.description.rank | M23 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
SCOPUSTM
Citations
28
checked on Nov 24, 2024
Page view(s)
18
checked on Nov 24, 2024
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.