DC FieldValueLanguage
dc.contributor.authorBiyikoglu, Turkeren
dc.contributor.authorSimić, Slobodanen
dc.contributor.authorStanić, Zoranen
dc.date.accessioned2020-05-01T20:12:48Z-
dc.date.available2020-05-01T20:12:48Z-
dc.date.issued2011-07-01en
dc.identifier.issn0381-7032en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1139-
dc.description.abstractA cograph is a P4-free graph. We first give a short proof of the fact that 0 (-1) belongs to the spectrum of a connected cograph (with at least two vertices) if and only if it contains duplicate (resp. coduplicate) vertices. As a consequence, we next prove that the polynomial reconstruction of graphs whose vertex-deleted subgraphs have the second largest eigenvalue not exceeding √5-1/2 is unique.en
dc.publisherCharles Babbage Research Centre-
dc.relation.ispartofArs Combinatoriaen
dc.subjectσ-graph | Characteristic polynomial | Cograph | Eigenvalues | Polynomial reconstructionen
dc.titleSome notes on spectra of cographsen
dc.typeArticleen
dc.identifier.scopus2-s2.0-79959471030en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage421en
dc.relation.lastpage434en
dc.relation.volume100en
dc.description.rankM23-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-

#### SCOPUSTM Citations

27
checked on Jul 13, 2024

#### Page view(s)

28
checked on May 10, 2024